31 October and 7 November 2019
Jerzy Kocik
Lattices, spinors, and classification of Apollonian disk packings. Here are the first 21 irreducible classes of lattices.
More on "geometric Apolloniana".
(Simply "tinyURL.com/jkocik", if you need to retype it)
Here is Don's derivation of parametrization of \(x\), \(y\), \(z\), and \(w\) satisfying
$$x^2+y^2=zw$$
by three parameters \(\alpha\), \(\beta\), and \(\gamma\):
$$
\begin{array}{rl}
x=&\beta\gamma-\alpha^2\\
y=&\beta\gamma+\alpha^2-2\alpha\gamma-\alpha\beta \qquad\quad(1)\\
z=& -\alpha^2 -(\beta-\alpha)^2\\
w=&-\gamma^2-(\gamma-\alpha)^2\\
\end{array}$$ This would suggest the following parametrization of spinors:
$$\mathbf a=\begin{bmatrix}\alpha\\\alpha\!-\!\beta\end{bmatrix},\quad \mathbf b=\begin{bmatrix}-\gamma\\ -\gamma\!+\!\alpha\end{bmatrix}$$
with \(x=\mathbf b\times\mathbf a\), \(y=\mathbf a\cdot\mathbf b\), \(z=-\|\mathbf a\|^2\), and \(w=-\|\mathbf b\|^2\). Another arrangement:
$$\mathbf a=\begin{bmatrix}\alpha\\\alpha\!-\!\beta\end{bmatrix},\quad \mathbf b=\begin{bmatrix}\gamma\!-\!\alpha\\ -\gamma\end{bmatrix}$$
with \(x=\mathbf a\cdot\mathbf b\), \(y=\mathbf a\times\mathbf b\), \(z=-\|\mathbf a\|^2\), and \(w=-\|\mathbf b\|^2\).
Question: Does \(2^2 + 8^2 = 4\cdot 17\) admit a representation by some \(\alpha\), \(\beta\), and \(\gamma\) of Eq. (1)?